3.9.5 \(\int \frac {(B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx\) [805]

3.9.5.1 Optimal result
3.9.5.2 Mathematica [A] (verified)
3.9.5.3 Rubi [A] (verified)
3.9.5.4 Maple [A] (verified)
3.9.5.5 Fricas [B] (verification not implemented)
3.9.5.6 Sympy [F]
3.9.5.7 Maxima [F(-2)]
3.9.5.8 Giac [A] (verification not implemented)
3.9.5.9 Mupad [B] (verification not implemented)

3.9.5.1 Optimal result

Integrand size = 40, antiderivative size = 133 \[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=-\frac {2 \left (2 a^2 b B-b^3 B-a^3 C\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^2 (a-b)^{3/2} (a+b)^{3/2} d}+\frac {B \text {arctanh}(\sin (c+d x))}{a^2 d}+\frac {b (b B-a C) \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))} \]

output
-2*(2*B*a^2*b-B*b^3-C*a^3)*arctan((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/ 
2))/a^2/(a-b)^(3/2)/(a+b)^(3/2)/d+B*arctanh(sin(d*x+c))/a^2/d+b*(B*b-C*a)* 
sin(d*x+c)/a/(a^2-b^2)/d/(a+b*cos(d*x+c))
 
3.9.5.2 Mathematica [A] (verified)

Time = 1.17 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.44 \[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\frac {\cos (c+d x) (C+B \sec (c+d x)) \left (\frac {2 \left (-2 a^2 b B+b^3 B+a^3 C\right ) \text {arctanh}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2+b^2}}\right )}{\left (-a^2+b^2\right )^{3/2}}-B \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+B \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+\frac {a b (b B-a C) \sin (c+d x)}{(a-b) (a+b) (a+b \cos (c+d x))}\right )}{a^2 d (B+C \cos (c+d x))} \]

input
Integrate[((B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^2)/(a + b*Cos[ 
c + d*x])^2,x]
 
output
(Cos[c + d*x]*(C + B*Sec[c + d*x])*((2*(-2*a^2*b*B + b^3*B + a^3*C)*ArcTan 
h[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/(-a^2 + b^2)^(3/2) - B*Log 
[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + B*Log[Cos[(c + d*x)/2] + Sin[(c + 
d*x)/2]] + (a*b*(b*B - a*C)*Sin[c + d*x])/((a - b)*(a + b)*(a + b*Cos[c + 
d*x]))))/(a^2*d*(B + C*Cos[c + d*x]))
 
3.9.5.3 Rubi [A] (verified)

Time = 0.86 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.19, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {3042, 3508, 3042, 3479, 3042, 3480, 3042, 3138, 218, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^2 \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 3508

\(\displaystyle \int \frac {\sec (c+d x) (B+C \cos (c+d x))}{(a+b \cos (c+d x))^2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {B+C \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 3479

\(\displaystyle \frac {\int \frac {\left (\left (a^2-b^2\right ) B-a (b B-a C) \cos (c+d x)\right ) \sec (c+d x)}{a+b \cos (c+d x)}dx}{a \left (a^2-b^2\right )}+\frac {b (b B-a C) \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (a^2-b^2\right ) B-a (b B-a C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a \left (a^2-b^2\right )}+\frac {b (b B-a C) \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3480

\(\displaystyle \frac {\frac {B \left (a^2-b^2\right ) \int \sec (c+d x)dx}{a}-\frac {\left (a^3 (-C)+2 a^2 b B-b^3 B\right ) \int \frac {1}{a+b \cos (c+d x)}dx}{a}}{a \left (a^2-b^2\right )}+\frac {b (b B-a C) \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {B \left (a^2-b^2\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{a}-\frac {\left (a^3 (-C)+2 a^2 b B-b^3 B\right ) \int \frac {1}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{a \left (a^2-b^2\right )}+\frac {b (b B-a C) \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3138

\(\displaystyle \frac {\frac {B \left (a^2-b^2\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{a}-\frac {2 \left (a^3 (-C)+2 a^2 b B-b^3 B\right ) \int \frac {1}{(a-b) \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}d\tan \left (\frac {1}{2} (c+d x)\right )}{a d}}{a \left (a^2-b^2\right )}+\frac {b (b B-a C) \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {B \left (a^2-b^2\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{a}-\frac {2 \left (a^3 (-C)+2 a^2 b B-b^3 B\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a d \sqrt {a-b} \sqrt {a+b}}}{a \left (a^2-b^2\right )}+\frac {b (b B-a C) \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {b (b B-a C) \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac {\frac {B \left (a^2-b^2\right ) \text {arctanh}(\sin (c+d x))}{a d}-\frac {2 \left (a^3 (-C)+2 a^2 b B-b^3 B\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a d \sqrt {a-b} \sqrt {a+b}}}{a \left (a^2-b^2\right )}\)

input
Int[((B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^2)/(a + b*Cos[c + d* 
x])^2,x]
 
output
((-2*(2*a^2*b*B - b^3*B - a^3*C)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqr 
t[a + b]])/(a*Sqrt[a - b]*Sqrt[a + b]*d) + ((a^2 - b^2)*B*ArcTanh[Sin[c + 
d*x]])/(a*d))/(a*(a^2 - b^2)) + (b*(b*B - a*C)*Sin[c + d*x])/(a*(a^2 - b^2 
)*d*(a + b*Cos[c + d*x]))
 

3.9.5.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3138
Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{ 
e = FreeFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + b + 
(a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] 
 && NeQ[a^2 - b^2, 0]
 

rule 3479
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(-(A*b^2 - a*b*B))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin 
[e + f*x])^(1 + n)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 
1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e 
 + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*(m + n + 
2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B) 
*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n 
}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Rat 
ionalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(I 
ntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0]) 
))
 

rule 3480
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(A*b 
- a*B)/(b*c - a*d)   Int[1/(a + b*Sin[e + f*x]), x], x] + Simp[(B*c - A*d)/ 
(b*c - a*d)   Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3508
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_ 
.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[1/b^2   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ 
[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - 
a*b*B + a^2*C, 0]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
3.9.5.4 Maple [A] (verified)

Time = 1.30 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.37

method result size
derivativedivides \(\frac {\frac {B \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{2}}-\frac {2 \left (-\frac {a b \left (B b -a C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (a^{2}-b^{2}\right ) \left (\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -b \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a +b \right )}+\frac {\left (2 B \,a^{2} b -B \,b^{3}-C \,a^{3}\right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{\left (a -b \right ) \left (a +b \right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{a^{2}}-\frac {B \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{2}}}{d}\) \(182\)
default \(\frac {\frac {B \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{2}}-\frac {2 \left (-\frac {a b \left (B b -a C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (a^{2}-b^{2}\right ) \left (\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -b \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a +b \right )}+\frac {\left (2 B \,a^{2} b -B \,b^{3}-C \,a^{3}\right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{\left (a -b \right ) \left (a +b \right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{a^{2}}-\frac {B \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{2}}}{d}\) \(182\)
risch \(-\frac {2 i \left (B b -a C \right ) \left (a \,{\mathrm e}^{i \left (d x +c \right )}+b \right )}{a d \left (-a^{2}+b^{2}\right ) \left (b \,{\mathrm e}^{2 i \left (d x +c \right )}+2 a \,{\mathrm e}^{i \left (d x +c \right )}+b \right )}-\frac {2 b \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) B}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) B \,b^{3}}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d \,a^{2}}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) C a}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}+\frac {2 b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) B}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) B \,b^{3}}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d \,a^{2}}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) C a}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B}{a^{2} d}-\frac {B \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{a^{2} d}\) \(619\)

input
int((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(a+cos(d*x+c)*b)^2,x,method 
=_RETURNVERBOSE)
 
output
1/d*(B/a^2*ln(tan(1/2*d*x+1/2*c)+1)-2/a^2*(-a*b*(B*b-C*a)/(a^2-b^2)*tan(1/ 
2*d*x+1/2*c)/(tan(1/2*d*x+1/2*c)^2*a-b*tan(1/2*d*x+1/2*c)^2+a+b)+(2*B*a^2* 
b-B*b^3-C*a^3)/(a-b)/(a+b)/((a-b)*(a+b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/ 
2*c)/((a-b)*(a+b))^(1/2)))-B/a^2*ln(tan(1/2*d*x+1/2*c)-1))
 
3.9.5.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 308 vs. \(2 (123) = 246\).

Time = 2.96 (sec) , antiderivative size = 684, normalized size of antiderivative = 5.14 \[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\left [\frac {{\left (C a^{4} - 2 \, B a^{3} b + B a b^{3} + {\left (C a^{3} b - 2 \, B a^{2} b^{2} + B b^{4}\right )} \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) + {\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a^{2} + b^{2}} {\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) + {\left (B a^{5} - 2 \, B a^{3} b^{2} + B a b^{4} + {\left (B a^{4} b - 2 \, B a^{2} b^{3} + B b^{5}\right )} \cos \left (d x + c\right )\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left (B a^{5} - 2 \, B a^{3} b^{2} + B a b^{4} + {\left (B a^{4} b - 2 \, B a^{2} b^{3} + B b^{5}\right )} \cos \left (d x + c\right )\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (C a^{4} b - B a^{3} b^{2} - C a^{2} b^{3} + B a b^{4}\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{6} b - 2 \, a^{4} b^{3} + a^{2} b^{5}\right )} d \cos \left (d x + c\right ) + {\left (a^{7} - 2 \, a^{5} b^{2} + a^{3} b^{4}\right )} d\right )}}, \frac {2 \, {\left (C a^{4} - 2 \, B a^{3} b + B a b^{3} + {\left (C a^{3} b - 2 \, B a^{2} b^{2} + B b^{4}\right )} \cos \left (d x + c\right )\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \cos \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) + {\left (B a^{5} - 2 \, B a^{3} b^{2} + B a b^{4} + {\left (B a^{4} b - 2 \, B a^{2} b^{3} + B b^{5}\right )} \cos \left (d x + c\right )\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left (B a^{5} - 2 \, B a^{3} b^{2} + B a b^{4} + {\left (B a^{4} b - 2 \, B a^{2} b^{3} + B b^{5}\right )} \cos \left (d x + c\right )\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (C a^{4} b - B a^{3} b^{2} - C a^{2} b^{3} + B a b^{4}\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{6} b - 2 \, a^{4} b^{3} + a^{2} b^{5}\right )} d \cos \left (d x + c\right ) + {\left (a^{7} - 2 \, a^{5} b^{2} + a^{3} b^{4}\right )} d\right )}}\right ] \]

input
integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(a+b*cos(d*x+c))^2,x, 
 algorithm="fricas")
 
output
[1/2*((C*a^4 - 2*B*a^3*b + B*a*b^3 + (C*a^3*b - 2*B*a^2*b^2 + B*b^4)*cos(d 
*x + c))*sqrt(-a^2 + b^2)*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x 
+ c)^2 - 2*sqrt(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^ 
2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) + (B*a^5 - 2*B*a^3*b^2 
 + B*a*b^4 + (B*a^4*b - 2*B*a^2*b^3 + B*b^5)*cos(d*x + c))*log(sin(d*x + c 
) + 1) - (B*a^5 - 2*B*a^3*b^2 + B*a*b^4 + (B*a^4*b - 2*B*a^2*b^3 + B*b^5)* 
cos(d*x + c))*log(-sin(d*x + c) + 1) - 2*(C*a^4*b - B*a^3*b^2 - C*a^2*b^3 
+ B*a*b^4)*sin(d*x + c))/((a^6*b - 2*a^4*b^3 + a^2*b^5)*d*cos(d*x + c) + ( 
a^7 - 2*a^5*b^2 + a^3*b^4)*d), 1/2*(2*(C*a^4 - 2*B*a^3*b + B*a*b^3 + (C*a^ 
3*b - 2*B*a^2*b^2 + B*b^4)*cos(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*cos(d* 
x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c))) + (B*a^5 - 2*B*a^3*b^2 + B*a*b 
^4 + (B*a^4*b - 2*B*a^2*b^3 + B*b^5)*cos(d*x + c))*log(sin(d*x + c) + 1) - 
 (B*a^5 - 2*B*a^3*b^2 + B*a*b^4 + (B*a^4*b - 2*B*a^2*b^3 + B*b^5)*cos(d*x 
+ c))*log(-sin(d*x + c) + 1) - 2*(C*a^4*b - B*a^3*b^2 - C*a^2*b^3 + B*a*b^ 
4)*sin(d*x + c))/((a^6*b - 2*a^4*b^3 + a^2*b^5)*d*cos(d*x + c) + (a^7 - 2* 
a^5*b^2 + a^3*b^4)*d)]
 
3.9.5.6 Sympy [F]

\[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\int \frac {\left (B + C \cos {\left (c + d x \right )}\right ) \cos {\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}}{\left (a + b \cos {\left (c + d x \right )}\right )^{2}}\, dx \]

input
integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**2/(a+b*cos(d*x+c))**2 
,x)
 
output
Integral((B + C*cos(c + d*x))*cos(c + d*x)*sec(c + d*x)**2/(a + b*cos(c + 
d*x))**2, x)
 
3.9.5.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(a+b*cos(d*x+c))^2,x, 
 algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?` f 
or more de
 
3.9.5.8 Giac [A] (verification not implemented)

Time = 0.35 (sec) , antiderivative size = 225, normalized size of antiderivative = 1.69 \[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=-\frac {\frac {2 \, {\left (C a^{3} - 2 \, B a^{2} b + B b^{3}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{{\left (a^{4} - a^{2} b^{2}\right )} \sqrt {a^{2} - b^{2}}} - \frac {B \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{2}} + \frac {B \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{2}} + \frac {2 \, {\left (C a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - B b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (a^{3} - a b^{2}\right )} {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b\right )}}}{d} \]

input
integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(a+b*cos(d*x+c))^2,x, 
 algorithm="giac")
 
output
-(2*(C*a^3 - 2*B*a^2*b + B*b^3)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a 
 + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(a 
^2 - b^2)))/((a^4 - a^2*b^2)*sqrt(a^2 - b^2)) - B*log(abs(tan(1/2*d*x + 1/ 
2*c) + 1))/a^2 + B*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a^2 + 2*(C*a*b*tan(1 
/2*d*x + 1/2*c) - B*b^2*tan(1/2*d*x + 1/2*c))/((a^3 - a*b^2)*(a*tan(1/2*d* 
x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^2 + a + b)))/d
 
3.9.5.9 Mupad [B] (verification not implemented)

Time = 9.67 (sec) , antiderivative size = 3763, normalized size of antiderivative = 28.29 \[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\text {Too large to display} \]

input
int((B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^2*(a + b*cos(c + d*x 
))^2),x)
 
output
- (B*atan(((B*((B*((32*(B*a^4*b^5 - C*a^9 - B*a^9 - 3*B*a^6*b^3 + B*a^7*b^ 
2 - C*a^6*b^3 + C*a^7*b^2 + 2*B*a^8*b + C*a^8*b))/(a^5*b + a^6 - a^3*b^3 - 
 a^4*b^2) - (32*B*tan(c/2 + (d*x)/2)*(2*a^9*b - 2*a^4*b^6 + 2*a^5*b^5 + 4* 
a^6*b^4 - 4*a^7*b^3 - 2*a^8*b^2))/(a^2*(a^4*b + a^5 - a^2*b^3 - a^3*b^2))) 
)/a^2 - (32*tan(c/2 + (d*x)/2)*(B^2*a^6 + 2*B^2*b^6 + C^2*a^6 - 2*B^2*a*b^ 
5 - 2*B^2*a^5*b - 5*B^2*a^2*b^4 + 4*B^2*a^3*b^3 + 3*B^2*a^4*b^2 - 4*B*C*a^ 
5*b + 2*B*C*a^3*b^3))/(a^4*b + a^5 - a^2*b^3 - a^3*b^2))*1i)/a^2 - (B*((B* 
((32*(B*a^4*b^5 - C*a^9 - B*a^9 - 3*B*a^6*b^3 + B*a^7*b^2 - C*a^6*b^3 + C* 
a^7*b^2 + 2*B*a^8*b + C*a^8*b))/(a^5*b + a^6 - a^3*b^3 - a^4*b^2) + (32*B* 
tan(c/2 + (d*x)/2)*(2*a^9*b - 2*a^4*b^6 + 2*a^5*b^5 + 4*a^6*b^4 - 4*a^7*b^ 
3 - 2*a^8*b^2))/(a^2*(a^4*b + a^5 - a^2*b^3 - a^3*b^2))))/a^2 + (32*tan(c/ 
2 + (d*x)/2)*(B^2*a^6 + 2*B^2*b^6 + C^2*a^6 - 2*B^2*a*b^5 - 2*B^2*a^5*b - 
5*B^2*a^2*b^4 + 4*B^2*a^3*b^3 + 3*B^2*a^4*b^2 - 4*B*C*a^5*b + 2*B*C*a^3*b^ 
3))/(a^4*b + a^5 - a^2*b^3 - a^3*b^2))*1i)/a^2)/((B*((B*((32*(B*a^4*b^5 - 
C*a^9 - B*a^9 - 3*B*a^6*b^3 + B*a^7*b^2 - C*a^6*b^3 + C*a^7*b^2 + 2*B*a^8* 
b + C*a^8*b))/(a^5*b + a^6 - a^3*b^3 - a^4*b^2) - (32*B*tan(c/2 + (d*x)/2) 
*(2*a^9*b - 2*a^4*b^6 + 2*a^5*b^5 + 4*a^6*b^4 - 4*a^7*b^3 - 2*a^8*b^2))/(a 
^2*(a^4*b + a^5 - a^2*b^3 - a^3*b^2))))/a^2 - (32*tan(c/2 + (d*x)/2)*(B^2* 
a^6 + 2*B^2*b^6 + C^2*a^6 - 2*B^2*a*b^5 - 2*B^2*a^5*b - 5*B^2*a^2*b^4 + 4* 
B^2*a^3*b^3 + 3*B^2*a^4*b^2 - 4*B*C*a^5*b + 2*B*C*a^3*b^3))/(a^4*b + a^...